skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Simon, Ulrich"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The potassium-oxygen battery (KOB) is a new type of metal-oxygen battery with high rechargeability and long cycle life. Currently, the energy density is rather limited and must be improved for KOB to become a viable energy storage technology for practical applications. In this study, a two-dimensional, multiphase KOB model is developed to design an optimized cathode structure. The model is validated and is used to study the influence of cathode porosity, surface area, and thickness on the discharge behavior. Higher cathode porosity and surface area are found to increase the discharge capacity and lower the discharge overpotential. However, using a microporous cathode may not be ideal for KOB. The electronic transport properties of the discharge product KO2are assessed, suggesting an effectively higher conductivity of KO2than previously predicted. In consequence, the formation of large KO2deposits with severalμm thickness may effectively inhibit oxygen transport in microporous materials. Thus, a hierarchical cathode porosity together with an optimized current collector design may be the key to significantly higher discharge performance. 
    more » « less